Intracellular Insulin and Impaired Autophagy in a Zebrafish model and a Cell Model of Type 2 diabetes
نویسندگان
چکیده
Type 2 diabetes mellitus is characterized by insulin resistance. However, the complete molecular mechanism remains unclear. In this study, zebrafish were fed a long-term high-fat diet to induce type 2 diabetes, which resulted in a higher body weight, body mass index, more lipid vacuoles in liver, increased insulin transcription level in liver, brain and muscle, and high fasting blood glucose in the high-fat diet zebrafish. Oppositely, the transcription levels of insulin substrate-2 and glucose transporter 2 were significantly decreased, indicating insulin signaling pathway and glucose transport impaired in the insulin-targeting tissues. Transcription of the autophagy-related genes, ATG3, ATG4B, ATG5, ATG7, ATG12, and FOXO3, were decreased but autophagy inhibitor gene m-TOR increased, and autophagy-flux was inhibited in liver of the high-fat diet zebrafish. Main of these changes were confirmed in palmitic acid-treated HepG2 cells. Further, in co-immunoprecipitation and subcellular co-localization experiments, the conjunction of preproinsulin with cargo-recognition protein p62 increased, but conjuncts of autophagosome with p62-cargo, lysosomes with p62-cargo, and autolysosomes decreased apparently. Interestingly, lysosomes, autolysosomes and conjuncts of p62-insulin localized at the periphery of palmitic acid-treated cells, the margination of lysosomes may mediate deactivation of proteases activity. These findings suggest that intracellular high-lipid may trigger defective autophagy, defective downstream signaling of insulin and accumulated intracellular preproinsulin, leading to dysregulation of cell homeostasis mechanism, which may be one of reasons involved in insulin-resistance in type 2 diabetes.
منابع مشابه
تأثیر تزریق داخل بطنی متفورمین بر یادگیری و حافظه فضایی موشهای آلزایمری مدل استرپتوزوسین
Background and objective: Insulin and its receptor are located in the central nervous system where it regulates many important processes such as neural proliferation, apoptosis, synaptic transmission, neuronal survival, synaptic plasticity, learning and memory. Alzheimer's disease (AD) is characterized by the accumulation of extracellular amyloid-β (Aβ) plaques, and intracellular aggregation of...
متن کاملTreatment effect of GABA on improve type one diabetes in NOD mice
Introduction: Gama amino butyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian nervous system. The concentration of GABA and the number of GABA cell secretion decrease in diabetic patient and experimental diabetes model. The reported effects of GABA activation on insulin secretion from beta cells have been controversial. In this study we investigated if GABA administr...
متن کاملThe survey of abnormal glucose tolerance and insulin resistace and incidence of diabetes type 2 in poly cystic ovary syndrome patients in Shiraz
Background: Polycystic ovarian syndrome is one of the most commen hyper androgenic disorders affecting women, its prevalence being estimated at 5% – 10%. Our goal was to survey abnormal glucose tolerance, insulin resistance and incidence of diabetes type 2 in patients with polycystic ovary syndrome. Materials and methods: This investigation is a descriptive – analytic study which is done to su...
متن کاملTHE EFFECT OF ENDURANCE TRAINING ON THE INTRACELLULAR CONTENT OF ULK1 AND FIP200 PROTEINS IN THE LEFT VENTRICULAR OF RATS WITH TYPE 1 DIABETES
Background: Unc-51 Like Autophagy Activating Kinase-1 (ULK1) and FAK Family Kinase-Interacting Protein of 200 kDa (FIP200) play an essential role in controlling autophagy and muscle volume. The aim of this research is to investigate the effect of endurance training on the intracellular content of ULK1 and FIP200 proteins in the left ventricular of rats with type 1 diabetes. Methods: In this ex...
متن کاملAntihyperglycemic effect of Rosa damascena is mediated by PPAR.γ gene expression in animal model of insulin resistance
Insulin resistance is a condition in which insulin signaling and action are impaired in insulin sensitive tissues and results in hyperglycemia, hyperlipidemia and type 2 diabetes mellitus. Our previous studies have shown that rosa damascena has antihyperglycemic effects on diabetic and normal rats. Therefore, we conducted a study to evaluate the effect of this medicinal plant on insulin sensiti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2017